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We study the effects on the quadratic map x,, ;=A—x? of an additive periodic forcing term of period
2. The modulated system can possess two attractors which are noncomplementary. The system displays
bistability and can exist in two different states of periodicity or chaos for a given A. The two attractors
coexist until, with increasing A, the trajectory boundary of attractor I collides with the unstable fixed
point created with attractor II and attractor I is destroyed. Thereafter, the system possesses only one at-
tractor, except in periodic windows of the first attractor, where again the system has two attractors. For
still larger A, the trajectory boundary of attractor II also collides with the unstable fixed point that was
created with it, resulting in a sudden enlargement of the chaotic regime. For even larger A, in periodic
windows, two attractors can again coexist. The range of A for which the system is iteratively stable may
not be continuous. We conclude by generalizing the broad features of period-2 forcing for the case of
period-p forcing when the system can possess a maximum of p noncomplementary attractors.

PACS number(s): 05.45.+b
I. INTRODUCTION

The logistic map

Vui1=ay,(1—yp,) (05y=<1,0<a=<4), (1.1)

as representative of discrete one-dimensional maps with a
quadratic maximum, has been studied very extensively
from the point of view of deterministic chaos and the
universality exhibited by such systems [1-3]. The logis-
tic map modulated by multiplicative [4—8] or additive
[8—11] forcing has been investigated both for random as
well as periodic forcing. A feature of such systems when
periodically forced is that they can possess more than one
attractor. The aim of this paper is to explore systemati-

cally the behavior of quadratic maps modulated by
J

Spi=Fpi—1°Fp,j—2° o f im0 fipp—1° "

The cyclic permutation of the maps f, ; in the direct
product above define the p different period-p maps
fp,O’fp,l’ LR 7fp,p—1'

Additive period-1 forcing of the quadratic map is
equivalent to a trivial redefinition of the parameter A.
We therefore begin our considerations with the study of
the quadratic map modulated by additive period-2 forc-
ing. In Sec. IT we show that the two attractors born as a
result of additive period-2 forcing are noncomplementa-
ry. In Sec. III we see that additive forcing causes a
tangent bifurcation to occur in place of the first pitchfork
bifurcation of the quadratic map. The system displays bi-
stability and its two attractors can be in different states of
periodicity or chaos for the same value of A. In Sec. IV
we describe the manner in which these attractors are des-
troyed as A is increased. In Sec. V we study the effect of
forcing on periodic windows of the quadratic map and in
Sec. VI we conclude with some general remarks about the
quadratic map modulated by an additive period-p forcing
term.
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periodic additive forcing. For this purpose we consider
the symmetric quadratic map

Xp41=A—x2=F(x,), (1.2)

which can be obtained by translation and rescaling from

the logistic map (1.1). Such a system with additive

periodic forcing can be described by the set of p equa-

tions:

Xpn +j+1=7k-—xp2n +jHecos(2mj/p)=f ) [ (Xpn 1)
(j=0,1,...

,p—land n=0,1,2,...), (1.3)

where p is the period and € is the amplitude of the addi-
tive forcing. A direct product of the p maps f,) ; taken
in sequence gives rise to a period-p map

(1.4)

II. EFFECTS OF ADDITIVE
PERIOD-2 FORCING

Consider the quadratic map (1.2) driven by an additive
period-2 forcing term and described by the equations

2.1
(2.2)

— 42 =
Xon+1=A—x3, T€=f1(xy,),

A —x2 =
Xon 42 =A "Xy 41 —€=f (X3, 41) .

We can define two maps f, and fj obtained by succes-
sive alternate applications of the maps f, and f_:

X 1=F 4+ (x2,)=f 4 (f —(x0 )= fo(x0,-1)

Xon+2 = (X 4 )= (4 (X)) =Fplx3,) .

Note that f, and fg, after suitable scaling, can be related
to the quartic map studied by Chang, Wortis, and Wright
[12].

Since f,=f of_and fg=f_of, and as f_ isalo-
cally invertible map, we can write

(2.3)

2.4)
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fioof_=fTlo(f_of )of_. 2.5)
Therefore

fa=fTlofgof_ (2.6)
and similarly

fB=fIl°fa°f+ > 2.7

i.e., the maps f, and f; are topological conjugates
[12—14]. If x} is a fixed point of f, then f_(x}) will be
a fixed point of f and if xj is a fixed point of f; then
f+(xp) will be a fixed point of f,. The state of periodi-
city of fz will be identical to that of f, for every A and e.
The properties of the map fz can therefore be inferred
from the properties of the map f,. We shall therefore
choose to focus our attention primarily on the map
o).

The quadratic map F(x) can be viewed as the half-
cycle map [15] of F'®(x), which is the second iterate of
F(x). At values of A for which F(x) has an attractor of
period 2n, F(x) has two complementary attractors of
period n. Attractors are considered to be complementary
if they are identical when seen from the standpoint of
half-cycle maps.

We will now show that the two attractors of the map
fo(x) are not complementary. Consider a value of A for
which f,(x) possesses two different stable fixed points
x % and x },. Two asymptotic sequences of x under itera-
tion by the half-cycle maps f, and f_ are now possible:

(2.8)

* * * *
xa]—>xl31—>xal—>xm—-> ,

(2.9)

* * * * ..
xaz—ijz;:xazf—ijzf—: .
If x %, is a fixed point of f,(x) on one attractor then xj
will be a fixed point of fz(x) on that attractor and these
two fixed points will iterate to each other through the ap-
propriate half-cycle maps f, or f_. Similarly, for the
other attractor, if x }, is a fixed point of f,(x), x 3, will be
a fixed point of fg(x).

The sequences (2.8) and (2.9) can be identical only if ei-
ther (i)

Xy =xy and xj =xp
or (ii)
X3 =xk and x},=xp .
Since, by assumption, the two stable fixed points x }; and

x %, are not identical, (i) cannot be true. In case (ii) the se-
quences (2.8) and (2.9) become

(2.10)

* * * * PP
xal—>xm—>xa1—>x31—> ,
Py I

(2.11)

* * * * e
xm—>xal—>xﬁl—>xa1—>
- I+ - +

Thus x5, =f_(x};) from (2.10) and x5, = f ;. (x ;) from
(2.11), i.e.,

xp=A—(x} P—e=A—(x%)+e,

which can be true only if e=0. Therefore, for nonzero
values of €, the two sequences (2.8) and (2.9) cannot be
identical. Consequently the two attractors (one with x %;
and xj; and the other with xj, and x, lying on their
respective trajectories when seen from the standpoint of
the half-cycle maps) are not complementary.

III. FIXED POINTS, BIFURCATIONS,
AND BASINS OF ATTRACTION

The fixed points of the map f,(x) are the zeros of
fo(x)—x, which is a polynominal of the fourth degree in
x. At A, the first tangent bifurcation occurs and two
complex-conjugate roots of the polynomial become real
and coincident. Therefore using the method of highest
common divisor and perturbation theory, one can show
that A;~ —0.25(1—¢€?) for small €. As a result of this
tangent bifurcation at A,, the system possesses two fixed
points, one unstable x and the other stable x;.

Let us denote by A, the value of A at which two new
fixed points, one unstable x* and the other stable xJ, ap-
pear as a result of a second tangent bifurcation. Using
singular perturbation theory [16], it can be shown that
Ay=0.75+(27€*/4)'”? for small €. The period-2 forcing
term causes the fixed points x;, x*, and xJ, whose coun-
terparts for F'?/(x) were coincident at A=0.75, to be
pushed apart. As shown in Sec. II, the two stable attrac-
tors x; and xJ can not be complementary and therefore
the forcing term acts like an asymmetric perturbation
[15]. The separation between x; and xJ at A, increases
with increasing €. With increasing A the fixed points x;*
and x; become unstable at different values of A. But at
whichever value of A either becomes unstable; thereafter
for increasing A it undergoes a period-doubling cascade
to chaos via pitchfork bifurcations with the same Feigen-
baum constants as those of the standard quadratic map.

Since the two stable attractors x; and xJ bifurcate at
different values of A, their periodicities for a given A can
be different, i.e., the system displays bistability. The
difference in periodicities of the two attractors for a given
A increases with increasing €. In fact, for sufficiently
large €, attractor I may already be in a chaotic state be-
fore the appearance of attractor II.

The basin boundaries of the two attractors keep chang-
ing with A. Another effect of period-2 forcing is that the
basin of attractor I (created at A,) is in general larger
than the basin of attractor II (created at A,). Thus for
random initial values of x and fixed A>A,, the system
usually converges to attractor I with higher probability.
Such a phenomenon has been seen in nonequilibrium sys-
tems where an asymmetric interaction can select, with
different probabilities, one of two possible states of equi-
librium [17].

IV. CRISES OF THE ATTRACTORS

For A > A,, the two attractors of the system coexist un-
til they undergo crises [18] when their respective trajecto-
ry boundaries intersect the unstable fixed point x* at
different values of A. This can be seen easily using box-
construction techniques [12]. In Fig. 1 we plot f,(x) as a
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BIG BOX

fo (x)

* 0 * *
c —Xa

xa
FIG. 1. The big box and the two small boxes of the map
fo(x) shown for €=0.01 and A=1.45.

function of x for fixed A>A,. One pair of opposite
corners of the big box is located at (x;, xJ) and (—x/,
—x/). If all the extrema of f,(x) lie within the box, i.e.,
are (big) boxable, the system is iteratively stable for all x
lying within the big box. In a similar way, as long as the
right maximum and the central minimum of f,(x) are
both boxable within the small boxes S-1 and S-II, which
are separated by the unstable fixed point x*, the two at-
tractors continue to coexist.

Let us denote by A,; and A_,, respectively, the values of
A for which the trajectory boundaries of attractors I and
II intersect the unstable fixed point x*. Using perturba-
tion theory one can show that A, .,~1.5437F 1.5249¢
for small €. At A, the right maximum of f,(x) just
touches the top of small box S-I (see Fig. 1). For A>A,,
the lower boundary of the trajectory of attractor I be-
comes less than x*. Trajectories of attractor I can there-
fore escape from small box S-I and intrude into the basin
of attractor II so that whenever attractor I is chaotic the
system converges to attractor II for all initial x,. In oth-
er words, at A,; a crisis occurs, resulting in the sudden
destruction of the basin of attractor I. If attractor II is in
a periodic state for A=A, a transfer is seen from chaos
(of attractor I) to periodicity (of attractor II) and this
transition has been called a “transfer crisis” [10]. For A
slightly greater than A,;, an initial point within a region
that was formerly the basin of attractor I will generate a
chaotic transient until “by chance” it falls out of the
former basin and is “caught” by the other attractor. If
W(7) be the fraction of initial points, uniformly distribut-
ed in the former basin of attractor I, which has a chaotic
transient of length 7, we find that

W(7) < exp( —pB7) 4.1)

i.e., the length of a chaotic transient is exponentially dis- .
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tributed [19]. Also, the average length of a chaotic tran-
sient decreases with increasing A for A > A ;.

As the value of A is increased beyond A, at A=A, the
minimum of f,(x) touches the small box S-II, i.e., the
trajectory boundary of attractor II collides with the un-
stable fixed point x* and this leads to a sudden enlarge-
ment of the chaotic regime. For A=A, trajectories of

Aut Act Ae2

Ay 15

FIG. 2. The composite bifurcation diagram of f,(x). (a) for
€=0.01 shows the presence of two attractors and their crises
when their trajectory boundaries meet the unstable fixed point
xX. (b) for €=0.2 shows the system converging to attractor II
in the interval (A,,A.,) except within periodic windows of at-
tractor I such as, for example, the region enclosed in the narrow
rectangular box. On enlargement, one can see that within the
box a period-2 window of attractor I coexists with a period-1
state of attractor II. In the interval (A,;,A.,) normally only at-
tractor II exists.



48 QUADRATIC MAP MODULATED BY ADDITIVE PERIODIC FORCING 1673

the system keep shuttling between the two regions which
were formerly the basins of the two attractors. If we
denote by {¢;) and (¢;;) the average occupation times in
the two regions, for A slightly greater than A, it is seen
that {t;;)>{¢;) and the two become comparable for
larger A.

Let us denote by A, the value of A at which the tra-
jectory of attractor I, or the trajectory of the attractor
which results after attractor II has undergone a crisis at
A, collides with the unstable fixed point x (created at
the first tangent bifurcation). Using perturbative
methods one can show that A,,,~2—9¢/5 for small €.
In terms of the box construction procedure, A_,, is the
smallest value of A for which an extremum of f,(x) just
touches the big box. For small values of ¢, the system is

iteratively unstable for A> A, i.e., its iterative domain
[12] is an empty set.

In Fig. 2(a) we show the ‘“‘composite” bifurcation dia-
gram of the map f,(x) for €=0.01 and A in the interval
(0.7, Aay)- By “composite,” we mean that it is an over-
lap of bifurcation diagrams obtained by starting with
different initial x, uniformly distributed over the iterative
domain. Such an overlap enables us to see both attrac-
tors of the map, whenever they exist, in the same bifurca-
tion diagram. It also suppresses the appearance of sud-
den jumps in the bifurcation diagram which would other-
wise occur as a result of “basin crossing” [11]. The two
attractors of f,(x) and the crises occurring at A,; and A,
can be seen in the figure.

The interval (Ay,A,,) over which the system has two

{b)
€-0.002
Br ey : NCIRTY) -2 * : ! L) -
: 70 (K (0 (k1795 1745 (k) P (k1795
A 2" Ay cz Amax N A Az Ac2
A
2
€=0.004

rie

N (
745 k
)\1

L

(k) (k) (k)1.795

)‘max )‘2 }‘CZ
A

FIG. 3. The composite bifurcation diagram of f,(x), in a region of A corresponding to an odd period (k =3) window of F(x). (a)
corresponds to €=0.001 for which A{ < A%, (b) corresponds to €=0.002 for which A{¥'=2A%). (c) corresponds to €=0.004 for which
A% > AK) | In this case, a second distinct, period-3 window can be seen starting from A%,
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basins of attraction, keeps shrinking with increasing €
and for €% 0.1679 it becomes zero, i.e., Ay=A,;. Thus for
€R0.1679, at A=A,, the stable fixed point xJ is created
within the trajectory of attractor I and the system con-
verges to attractor II, which at birth is in a state of
period 1. This process results in the appearance of a
discontinuity in the bifurcation diagram. These features
are evident in Fig. 2(b), which is the composite bifurca-
tion diagram of f,(x) for e=0.02.

Normally for A, <A =<A,, all points within the itera-
tive domain of the system converge to attractor II. This
is true except for those values of A in this range for which
attractor I has periodic windows. In such cases, for some
initial values x, the system converges to attractor I and
remains there, whereas for other initial x it converges to
attractor II. Thus for A,; <A <A_,, the system will again
possess two attractors and show bistability for those
subranges of A for which attractor I possesses periodic
windows. For example, the rectangular box in Fig. 2(b)
under enlargement can be seen to correspond to a
period-2 window of attractor I.

For small €, A,,,>A,. However on increasing €, we
can have A ., <A,. For such values of €, the system is
not iteratively stable for A lying in the interval (A ,,,A,).
A composite bifurcation diagram for €% 0.2431 would
therefore show an empty region between A_,, and A, with
the system again becoming iteratively stable and converg-
ing to attractor II for A > A,.

V. PERIODIC WINDOWS

The behavior of the map f,(x) in intervals of A in
which the quadratic map F(x) has windows of period k,
de}Pends on whether k is odd or even. When k is odd, at
7&(, ), near where the window of F(x) is born, a window of
period k is also born to the attractor [which we shall refer
to as k(I)] of f,(x). At a somewhat larger value AS¥, a
second attractor k(II) is born which is also of period k.
These attractors are not complementary and with in-
creasing A undergo the period-doubling route to chaos.
Let us denote by A% and A% the values of A at which at-
tractors k(I) and k(II), respectively, collide with the un-
stable fixed point created with attractor k(IT) at A=A}
and by A%} the value of A at which either attractor k(I),
or the attractor which exists beyond A%, collides with
the unstable fixed point created with attractor k(I) at
A=A¥. Then, depending on the value of €, three
different situations can arise. We illustrate these in Fig.
3, which shows composite bifurcation diagrams of f,(x)
for values of A in the region of a period-3 window of the
map F(x). Figure 3(a) is for small values of € (¢=0.001)
when AY <A%) ie., attractor k(ID) is created before at-
tractor k(I) has undergone its crisis. Figure 3(b) is for
somewhat larger values of € (€=0.002) when AF'=AK
and the system converges to attractor k(II) alone for
A> A0, Notice the existence of a period-6 window of the
system in the boxed area in the interval (A, AK)). Fig-
ure 3(c) is for even larger values of € (€=0.004) when
AP > Ak and now we see a second distinct period-3 win-
dow of the system for AS¥’ <A <A!%), which also shows a
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period-5 window of the system. Box-construction tech-
niques can be used to understand each of these situations.

In regions of A corresponding to windows of period k
(even) of the map F(x), two attractors of the map f,(x)
of period k /2, rather than k, get created at A{*/?) and
AY/?. The other difference from when k is odd is that at-
tractor k(I) never gets to collide with the unstable fixed
point that was created together with attractor k(II) be-
cause the two are too separated. If we denote by Alf/?
the value of A at which attractor k(I) collides with the un-
stable fixed point that was created with it, then for a
given €, two situations can arise, depending on whether
AE/2 is greater than or less than A%, We illustrate
them by the composite bifurcation diagrams of f,(x) in

Fig. 4 for values of A in the region of a period-4 window

2

(a)
€=0.0002

-2 1 | 1
1.938 (k/2)  (k/2) 1.945

1 L
(k/2)  (k/2)
>‘1 2 )\max c2

A

-2 L 1 1 L 1
1.938 )fk/2> (k/2) (k/2)
1

|
(k/2)1.945

)‘2 c2

Amax

A

FIG. 4. The composite bifurcation diagram of f,(x) in a re-

gion of A corresponding to an even period (k =4) window of

F(x). (a) corresponds to €=0.0002 where A2 <Alk/2. (b)

corresponds to €=0.001 for which A%/? > A%/2) Note now the
occurrence of two distinct period-2 windows.
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of the map F(x). In Fig. 4(a) €=0.0002, for which
Ak72) 5 ASk72) and we see first a period-2 window opening
up at A{*/?) with a second attractor also of basic period 2
being created at AY¥/2). Figure 4(b) is for a larger value of
€ (€=0.0001), for which A¥/2 <A%/? and we now see
two distinct period-2 windows of the system separated by
a region of well developed chaos.

It is clear from the above that the two complementary
attractors of F®)(x) present in a periodic window do not
remain complementary in the presence of an additive
period-2 forcing term; and the separation between the
values of A at which these attractors are created increases
with increasing €. For large enough ¢, this increasing
separation results in the appearance of two separated
windows with the same basic period and it may turn out
that for sufficiently large € another window of a different
basic period may in fact intervene between them. Thus
the Sarkovskii ordering [20] of the windows of the modu-
lated map is very different from that of the quadratic
map.

VI. ADDITIVE PERIOD-p FORCING

On the basis of our experience with an additive
period-2 forcing term we can try and make some general-
izations about the quadratic map modulated by an addi-
tive forcing term of period p. Although now there are p
different period-p maps f, ;, j=0,1,2,..., p —1 [see Eq.

(1.4)], they can be shown to be topological conjugates of
each other. Therefore it is sufficient to study any one of
them to arrive at the properties of additive period-p forc-
ing.

Since F'P(x)=FoFoFo ---oF (p times), F(x) is the
1/p cycle map of F”(x). For values of A for which the
1/p cycle map is in a state of period #n, the map F'")(x)
will possess k complementary attractors, each of period
n/k, where k is the highest common factor of p and n.
An additive forcing term of period p modulating the
quadratic map causes these k complementary attractors
of F'X(x) to become noncomplementary. These attrac-
tors can be in states of different periodicities for a given A
since each is born via a tangent bifurcation and under-
goes subsequent pitchfork bifurcations at different values
of A. Therefore the system can display multistability, sta-
bilizing to one of a number of possible states ( <k) de-
pending on the initial x,. The boundaries of the trajec-
tories of these attractors also collide with the unstable
fixed points at different values of A so that the iterative
domain, as well as the ranges of A for which the system is
iteratively stable, will now depend in complicated ways
on A and €.
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